

© 2015, IJOCIT All Rights Reserved Page 664

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

April, 2015

Developing a New Approach to the Architecture, Design and

Secure Implementation of Web Applications

Afsaneh Gilani
1
, Nasser Modiri

2*
, Alireza Nikravanshalmani

3

Department of computer, Karaj Branch, Islamic Azad University, Alborz
1,3

Department of Electrical, Computer & IT, Zanjan Branch, Islamic Azad University, Zanjan
2

Iran
1,2,3

Email : nassermodiri@yahoo.com

Keywords: Software security, Security Requirements Engineering, Secure Software Life
Cycle, Secure Software Architecture and Design, Secure Software Implementation.

1.Introduction

Today, web-based applications are of

significant importance because of the

storage of high volume of information as

well as processes that must remain secure.

Therefore, it is important to ensure the

system is developed based on user

requirements while ensuring the security

of software systems, which is equally

important. [1]

One of the reasons for the success of most

of the attacks to software systems is the

vulnerability of such systems. In order to

develop secure software systems, it is

necessary to provide a secure environment

and consider security in the primary design

of the system. Hence, the software

lifecycle (including the design and

architecture software) security

requirements must be taken into account.

[2]

At best, the security in the system coding

phase is to be considered primarily

because organizations more care about the

function than software security. Moreover,

security experts rarely take part in the

development process. Hence, systems are

not developed securely and as a result

software systems have security flaws. It is

economic to consider security in the early

stages of system development as it will

also result in a more powerful design [3].

Security requirements engineering

(SRE)[4] is a new field of software

Abstract: One of the main challenges of web-based applications is their security vulnerabilities,

which are caused by the lack of concern for security issues in the lifecycle of software

development. Therefore, concern for security requirements in the lifecycle of software

development is one of the essential components of secure software development. Most software

troubles are caused by the inappropriate design and development of the software. Almost 50% of

security holes emerge in the software design phase. In this paper, the most important secure

methods for software development and the characteristics of each method were discussed.

Afterwards, using the discussed methods an approach was proposed based on the security

requirements engineering for the development of secure web applications.

mailto:nassermodiri@yahoo.com

© 2015, IJOCIT All Rights Reserved Page 665

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

April, 2015

development, which focuses on the

incorporation of software security in the

early stages of the design of software

systems. The lack of concern of developers

for SRE leads to the development of

security flaws in software because the

major objective of system developers is to

build an application system instead of a

secure application system. In general,

software flaws are of the following two

origins: [5]

- Problems caused by bad design

decisions: These defects are

usually known as flaws.

- Coding errors which are known as

bugs

According to McGraw’s theory, 50% of

software security problems originate from

the design phase. Design flaws are not

identifiable in the coding phase. The main

goal of attackers is to gain unauthorized

access to vital business and private

information. Each system should be

architected such that it can protect the

information against any sort of attack[6].

Moreover, according to the OWASP

(Open Web Application Security Project)

theory, software design level flaws are less

investigated while they pose the highest

risk to the software. It is hard to detect

such flaws through static or dynamic

application scans and detection of such

flaws calls for a profound understanding of

software architecture. Software

vulnerability can occur in each of the

software lifecycle phases but the design

level is the phase with the most

susceptibility to security

vulnerabilities.[7]Although the design

level is highly important for the

development of secure systems, the

implementation and coding phase also play

an important role in the development of

secure software.

Moreover, although there is a great deal of

information about the development of

secure software, there are still questions

about development of such software.

Because of the smart attacks aimed at web

applications, the security of web

applications has become a major challenge

in the field of software development.

Hence, the main question or problem is

how to overcome software security

problems. In this study, the most important

secure software methods were examined

and were used as the basis for a new

approach to the architecture, design and

secure implementation of software.

Different parts of this article are as

follows: Section two discusses related

work and section three investigates the

software lifecycle. The third section

includes security activities in the

architecture level while section four

discusses the security measures proposed

for the detailed design level. Section five

discusses security measures for the coding

phase and finally provides a conclusion.

 2.Literature Review

The MS-SDL (Microsoft Security

Development Lifecycle) method, which

was introduced by Microsoft, particularly

values the training and awareness of users.

In this method, threat modeling is used to

identify security vulnerabilities in the

design and architecture phases[8].

CLASP (Comprehensive Lightweight

Application Security Process) was

developed by OWASP in 2006 and is

comprised of 30 security activities. The

roles defined in CLASP include the roles

of manager, architect, requirements

specifier, designer, implementer, tester,

and security auditor.CLASPincludes

templates,checklists,and guidelines to

support different activities [9].

© 2015, IJOCIT All Rights Reserved Page 666

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

April, 2015

In the Touchpoints method a set of

industrial experiences are included as best

practices. Viewpoints are also a

combination of black-hat (destructive) and

white-hat (constructive) activities. Both

groups of activities are necessary for

achieving effective security results.In this

method, the three major principles of

software security include risk

management, software security

viewpoints, and knowledge [10].

The following table shows activities

proposed for the secure software

development methods in each phase of the

software development lifecycle.

At the architecture level, the proposed

SDL technique aims at identifying the

security vulnerabilities of threat modeling.

In the detailed design phase, this technique

focuses on reduced attack surface. For

example, the proposed technique is used to

reduce attack surface, remove unnecessary

features, and limit privileges.

Similar to SDL, CLASP also supports

threat modeling in the architecture phase.

At the detailed design level, CLASP acts

as a supplement to SDL because of the

attack surface reduction activities it

supports. In fact, SDL is mostly focused

on limiting privileges whereas CLASP is

focused on limiting the access points.

The main focus of the Touchpoints method

in the design phase is on risk analysis. In

the design and architecture phases security

principles, such as principle of least

privilege shall be taken into account.

Moreover, in these phases the attacks

should also be documented.

In the design phase, the most important

risks and risk-coping mechanisms are

identified. Although smart design is a good

start point, it is not enough for software

presentation. The implementation part has

also its specific tricks [11]. The SDL and

Touchpoints methods propose secure

coding principles for the implementation

phase. In this paper, by combining the

strengths of secure software development

methods an enhanced approach to secure

software development is developed [12].

Table 1: Activities proposed for the secure software development methods

Software

lifecycle phases

SDL CLASP TouchPoints

Requirement Identifying security

requirements

Using misuse cases to determine

security requirements

Determining

resources

Design Threat modeling, attack

surface analysis, use of

security approaches for

secure software

development

Threat modeling, attack surface

detection, use of security

guidelines, considering security

issues in the class diagram

Risk analysis

Implementation Applying secure coding

standards, using static

code analysis tools, and

testing

Applying secure coding

instructions

×

Software test Code analysis and use of

secure testing tools

Using software security test tools

and presenting security

checklists, Penetration Testing

Black box test,

white box test,

Penetration Testing

3. Software Lifecycle

In general, the software lifecycle consists

of the following six phases: requirements

analysis, design, coding, testing and

support. The ISO/IEC 12207 standard

divides the software design phase into two

© 2015, IJOCIT All Rights Reserved Page 667

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

April, 2015

parts: software architecture and detailed

design. According to this standard, in the

software architecture phase the overall

high-level structure and components of the

software are defined. However, in the

detailed design phase each component is

examined and details of the design of each

component are also determined.

 4. Security Activities Proposed

for the Software Architecture

Phase

The first step in the design level is to

determine the software architecture. This

phase is known as the top-level design

phase, in which system components are

designed based on the identified

requirements. Software architecture is

usually shown by physical and logical

diagrams. In software architecture

elements represent the system

performance. Activities proposed for the

software architecture phase are shown in

figure 1.

Identify Functional and Non-
Functional Requirements

Build a high level Software
Architectur

Threat Modeling

Implementation Security
Architecture Design

Security Architecture Review

Attack Surface Analysis

1

2

3

4

5

6

Figure 1: Security activities for the software architecture phase

Each of the activities shown in the figure 1

is described below.

Stage one: Identifying functional and

non-functional software requirements

In this phase, the functions required by the

system as well as the security goals of the

software (which are determined in the

needs assessment phase) are examined.

The most important security goals include

confidentiality, integration, availability,

and data integrity.

Stage two: Overall software

architecture design

In this phase, all of the components

required for the architecture shall be

identified. Inputs of this phase include use

case diagrams, functional requirements,

non-functional requirements (efficiency,

reliability,andsecurity), required

technologies, and deployment

environment.

Stage three: Threat modeling

Threat modeling is an effective approach

to the detection of flaws at the architecture

level. The objective of this phase is to

assess threats associated with system

assets and present acceptable security

controls. In this phase, all of the threats,

vulnerabilities and security issues

© 2015, IJOCIT All Rights Reserved Page 668

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

April, 2015

associated with each component are

identified.

Stage four: Implementation of secure

architecture design

After identifying the threats to software

architecture, it is necessary to examine and

study techniques for reducing the risks of

software architecture. In this phase,

components necessary for ensuring

security should be identified.

Stage five: Attack surface analysis

Attack surface analysis includes

identification of the system parts that call

for security tests and assessments for the

detection of vulnerabilities. The attack

surface is defined by architects but the

developers and testers should also examine

attack surfaces.

Stage six: Review of software

architecture design

In this phase, documents prepared at the

architecture level are reviewed. The

resulting document is reviewed with an

aim to consider the security goals defined

in the software architecture phase. In this

phase, the proposed architecture should be

examined using OWASP ASVS [13].

The outputs of the secure architecture

design include the following:

- Overall software diagram

- A list of software architecture

threats

 5. The Proposed Approach for

the Detailed Design Phase

Detailed software design follows the

architecture design phase. In this phase,

the details of components and interfaces

defined by software architecture are

examined. Details are documented such

that they are comprehensible for the

programmer in the implementation phase.

Activities proposed for the detailed design

phase are illustrated in figure 2.

Software Architecture Overview

Software Design Description

Secure Software Design

Secure Design DataBase

Reduce Attack Surface

Security Design Review

1

2

3

4

5

6

Figure 2: Security activities for the detailed design phase

Each of the above activities is described

below.

Stage one: An overview of software

architecture

In this phase, components determined in

the software architecture as well as the

interactions between the components are

studied. Moreover, results of threat

modeling and the threat model

© 2015, IJOCIT All Rights Reserved Page 669

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

April, 2015

corresponding to the software architecture

are analyzed.

Stage two: Software design description

At this stage the details of components

specified in software architecture are

presented in a comprehensible manner to

the programmer. In addition, component

interfaces, components design, workflow

and algorithms should be defined in this

phase.

Stage three: Secure software design

For the purpose of secure software design

it is necessary to employ secure software

design guidelines and adopt security

approaches to secure software design.

Moreover, it is recommended to use

security modeling languages such as

UMLsec[14] in this phase.

Stage four: Secure database design

One of the essential aspects of software

security is database security. The most

important techniques proposed for the

security of databases include the

encryption and access control methods.

Stage five: Reduce attack surface

The attack surface of software products

includes a part of the code, interfaces,

services and protocols available to all

users (especially to non-reliable users).

The process of surface attack analysis

examines all of the interfaces, protocols

and executable codes. This process

reduces the access of unauthorized users to

executable codes.

Stage six: Software design review

In this stage, the detailed design

documents are examined using checklists

so as to determine the security

vulnerabilities.

The outputs of this stage include the

following:

- Components description

- Design of modules embedded in

layers or subsystems

 6.The Proposed Method in the

Implementation Phase

In the implementation phase, developers

implement software modules based on the

design documents, which determine the

tasks of components and the interactions

between them. Next, modules are merged

to obtain an integrated system. The

implementation phase is important for

successful development of secure

software. Security bugs in the

implementation phase are introduced into

the system as a result of poor coding, the

lack of security knowledge and the use of

non-secure methods. In the

implementation phase, developers use the

documents resulted from the detailed

design level.

Activities that should be conducted in this

phase include the following:

Stage one: Review of the detailed design

document

In the implementation phase, the outputs

of the detailed design level are usually

used to present the software package.

Results of threat modeling are also used as

important guidelines in the implementation

phase. At this level, developers pay special

attention to the accuracy of codes so as to

reduce vulnerabilities.

Stage two: Secure software coding

In this stage a suitable language should be

used for writing codes. Moreover, coding

should be carried out based on

programming instructions and secure

coding standards. The most important

points about secure programming, which

were introduced by CERT, include the

following: input validation; considering

compilers’ warnings; a review of the

architecture and design to identify security

policies; simplicity of implementation; the

principle of minimum access; in-depth

© 2015, IJOCIT All Rights Reserved Page 670

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

April, 2015

defense mechanism; and application of

secure coding standards.[15]

Stage three: Code analysis

In order to analyze the codes, it is

necessary to use static and dynamic code

analysis methods. The static analysis

method is used to review security

vulnerabilities when coding is finished.

However, dynamic analysis is the process

of run time software testing. In this

process, the attacker’s behavior is

analyzed and vulnerabilities are identified.

Stage four: Code review

In this stage codes are assessed and

examined using secure coding checklists

based on the threat model so as to identify

the vulnerabilities. Using checklists, it is

possible to study the most important

security vulnerabilities such as

authentication, authorization, access

control, input validation and output

validation.

Security Coding Standard

Static Analysis Code

Dynamic Analysis Code

Code Review

Detailed Design Document1

2

3

4

5

Figure 3: Security activities in the coding phase

 7. Conclusion

For the purpose of secure software

development it is necessary to consider

security requirements throughout the

software lifecycle. Among all of the

different phases of software lifecycle, the

design and implementation phase plays the

key role in the development of secure

software. Every chance of secure software

development should be used to determine

the security activities for each of the

development stages (i.e. needs assessment,

design, implementation and testing).

The characteristics of secure software

development methods based on the

parameters for each of the software

development stages include the following.

In the needs assessment phase the software

security requirements are identified. At the

design level, the threat modeling

technique, secure design principles and

instructions, and secure design templates

are employed. In the implementation stage

a secure programming language is used to

reduce security risks and errors. In this

phase, it is also necessary to follow secure

coding standards and instructions. Attack

© 2015, IJOCIT All Rights Reserved Page 671

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

April, 2015

surface analysis, as an important parameter

in the secure software lifecycle, should be

considered and the attack surface should

be reduced to the possible extent.

References

[1] Salini, S. Kanmani,(2013)," Model

Oriented Security Requirements

Engineering(MOSRE) Framework for

Web Applications", Springer, pp. 341-353.

[2] Ramin Shirvani, Nasser Modiri,(

2011)," Software Architectural

Considerations For The Development of

Secure Software Systems", IEEE, pp. 84-

85.

[3] Daniel Mellado et al,(2010)," A

systematic review of security requirements

engineering", Elsevier, pp. 153–165.

[4] P. Salini, S. Kanmani,(2012),"Survey

and analysis on Security Requirements

Engineering", Elsevier, pp. 1785–1797.

[5] Christoph Hochreiner et

al,(2014),"Using Model Driven Security

Approaches in Web Application

Development", Springer, pp. 419–431.

[6] Asoke K. Talukder , Manish

Chaitanya,(2009)," Architecting secure

software systems", Taylor & Francis

Group.

[7] S. Rehman,K. Mustafa,(2009) ,

"Research on Software Design Level

Security Vulnerabilities", ACM.

[8] Michael Howard, Steve

Lipner,(2006),"The Security Development

Lifecycle: SDL: A Process for Developing

Demonstrably More Secure Software",

Microsoft Press.

[9] OWASP CLASP,(2015),"OWASP

CLAPS Project " . [Online] .

Available:https://www.owasp.org/index.ph

p/CLASP.

[10] McGraw,(2006)," Software Security:

Building Security In", Addison Wesley.

[11] AXELLE APVRILLE , MAKAN

POURZANDI,(2005)," Secure Software

Development by Example",IEEE,pp.10-

17.

[12] Bart De Win et al,(2009),"On the

secure software development

process:CLASP,SDL and Touchpoints

compared", Elsevier, pp. 1152–1171.

13.OWASP,(2014) ,"Application Security

Verification Standard " , [Online] .

Available:http://www.OWASP.org.

[14]Jan J¨urjens,(2002), " UMLsec:

Extending UML for Secure Systems

Development " , Springer,pp.412–425.

[15] Robert Seacord,(2011)," Top 10

Secure Coding Practices " , [Online] .

Available:

https://www.securecoding.cert.org/conflue

nce/display/seccode/Top+10+Secure+Codi

ng+Practices.

